Sparse Functional Principal Component Analysis via Regularized Basis Expansions and Its Application

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Principal Component Analysis via Regularized Basis Expansion and Its Application

Recently, functional data analysis (FDA) has received considerable attention in various fields and a number of successful applications have been reported (see, e.g., Ramsay and Silverman (2005)). The basic idea behind FDA is the expression of discrete observations in the form of a function and the drawing of information from a collection of functional data by applying concepts from multivariate...

متن کامل

Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation

Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loading...

متن کامل

Functional regression modeling via regularized Gaussian basis expansions

We consider the problem of constructing functional regression models for scalar responses and functional predictors, using Gaussian basis functions along with the technique of regularization. An advantage of our regularizedGaussian basis expansions to functional data analysis is that it creates a much more flexible instrument for transforming each individual’s observations into functional form....

متن کامل

Regularized Principal Component Analysis ∗

Given a set of signals, a classical construction of an optimal truncatable basis for optimally representing the signals, is the principal component analysis (PCA for short) approach. When the information about the signals one would like to represent is a more general property, like smoothness, a different basis should be considered. One example is the Fourier basis which is optimal for represen...

متن کامل

Sparse Principal Component Analysis via Variable Projection

Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis. We discuss a robust and scalable algorithm for computing sparse principal component analysis. Specifically, we model SPCA as a matrix factorization problem with orthogonality constraints, and develop specialized optimization algorithms that partially minimize a subset of the variables (varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Simulation and Computation

سال: 2010

ISSN: 0361-0918,1532-4141

DOI: 10.1080/03610918.2010.491586